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Advanced Manufacturing Configuration

by Sample-efficient Batch Bayesian Optimization

Xavier Guidetti1,2, Alisa Rupenyan1,2, Lutz Fassl3, Majid Nabavi3, and John Lygeros1

Abstract—We propose a framework for the configuration
and operation of expensive-to-evaluate advanced manufacturing
methods, based on Bayesian optimization. The framework unifies
a tailored acquisition function, a parallel acquisition procedure,
and the integration of process information providing context
to the optimization procedure. The novel acquisition function
is demonstrated, analyzed and compared on state-of-the-art
benchmarking problems. We apply the optimization approach to
atmospheric plasma spraying and fused deposition modeling. Our
results demonstrate that the proposed framework can efficiently
find input parameters that produce the desired outcome and
minimize the process cost.

Index Terms—Process Control, Probability and Statistical
Methods, Intelligent and Flexible Manufacturing, Machine
Learning for Control, Bayesian Optimization

I. INTRODUCTION

IN manufacturing, the optimization of process inputs for

a new production task to meet productivity and quality

requirements, is a challenging task. This is true especially

for processes where the direct outcome of the process inputs

comprises several interconnected outputs, whose quality anal-

ysis requires time-consuming or destructive measurements.

Additive manufacturing, and in general the technologies that

deposit material layer by layer on a substrate, are examples of

such processes [1]. A sample-efficient, data-driven approach

to find optimal process parameters for a manufactured part is

thus beneficial, especially when the number of possible trials

is restricted by the produced pieces quality assessment costs.

The standard approach for process configuration, control

and optimization uses modeling based on statistical principles

[2], [3]. Candidate combinations of process parameters are

proposed following a full factorial or fractional design of

experiments, using optimal orthogonal designs or Taguchi

arrays to limit the number of experiments [4]. Then, the

best candidates are selected following regression analysis of
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the experimentally determined quality parameters [5], [6].

Alternatively, data-driven modeling using neural networks [7],

[8] or support vector machines [9] has been proposed to relate

process inputs to quality parameters. All these approaches

require a large number of samples, to either achieve good

predictive capabilities, or to reliably cover all possible process

variations.

Previous work on data-driven optimization of manufacturing

processes [10], [11] has shown that Bayesian optimization

(BO) is an information efficient and effective technique to

automate the configuration of industrial processes with a lim-

ited number of experiments. BO has been applied in parallel

or nested formulations for the tuning of algorithms [12], the

optimization of black-box functions [13]–[15], or the tuning

of cascaded controllers [16]. Safety-aware BO methods have

been used to ensure that safety constraints are respected,

providing probabilistic guarantees that all candidate samples

remain in the constraint set [17]. They have been demonstrated

for robotic applications [18] and for adaptive control in posi-

tion tracking [19]. Iterative model-based learning and control

methods have recently been applied to specific processes in

the field of additive manufacturing [20].

In this paper, we propose a data-driven approach for the

optimization of process input parameters, given desired output

properties of the manufactured components. The main con-

tributions of our work are: 1) a sample-efficient parameters

selection procedure, based on a novel BO acquisition function

whose aggressiveness can be tuned, 2) a detailed analysis

of the novel acquisition function performance on bench-

marking problems from the literature, and 3) a parallelized

status-aware optimization procedure that incorporates process

information in the BO procedure, making it fully applicable

to any experimental scenario. We demonstrate the proposed

method on atmospheric plasma spraying (APS) and fused

deposition modeling (FDM, also known as 3D printing), which

perfectly exemplify the challenges of advanced manufactur-

ing – namely, hard-to-model multiple-input-multiple-output

relationships, expensive deposition trials and time-consuming

quality characterization of manufactured pieces.

In Section II, we detail the challenge that motivated the

research and the techniques upon which we base our work.

Section III presents our contributions on BO. In Section IV we

conduct a thorough analysis and comparison of the proposed

optimization method. Section V extends the BO method to

complex manufacturing applications. Lastly, Sections VI and
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VII detail the experimental work conducted on APS and FDM.

II. BACKGROUND

A. Process optimization in advanced manufacturing

Multiple advanced manufacturing processes, especially

those relying on layer-wise deposition, are challenging for

precise modeling and optimization, due to their inherent com-

plexity. Data-driven optimization is impeded by limited data

availability, which is common in this class of problems. The

process outputs, i.e. the desired part properties, are unknown

and can only be evaluated point-wise. The properties analysis

is a slow and expensive procedure, requiring destructive ap-

proaches. The configuration is often accelerated by performing

experiments in batches. Between experimental sessions, the

manufacturing equipment often undergoes changes (wearing,

maintenance, etc.) that need to be tracked to reduce output

variation. The production cost is represented by a determin-

istic function of the input parameters (e.g. used resources,

consumed energy, induced equipment wear, etc.). In this man-

ufacturing context, there exists a peculiar relationship existing

between cost reduction and constraints fulfillment. The main

focus of the optimization lies in finding feasible samples,

while cost reduction is a secondary goal to be achieved once

feasibility has been reached. Furthermore, as these processes

are often used to manufacture very small lots, producing as

many feasible samples as possible during configuration itself

is important [21]. While suboptimal in terms of cost, these

samples are usable, reducing the amount of runs conducted

and the total configuration cost.

B. Gaussian Processes

Given x ∈ R
n where n is the number of inputs, we

model each output function c(x) using Gaussian process

regression. A Gaussian process (GP) is a collection of random

variables, any finite number of which have a joint Gaussian

distribution. It provides a distribution over functions c(x) ∼
GP(µ(x), k(x,x′)) that is fully defined by its mean function

µ(x) and its covariance, given by the kernel function k(x,x′).
We denote the i-th measurement corresponding to an input

vector xi by yi = c(xi) + εi, where εi is the measurement

noise with distribution N (0, σ2
n). Given a set of p input vectors

paired with the corresponding noise corrupted measurements

T = {(xi, yi)}
p
i=1, we can calculate the posterior distribution

of c(·) at any query point x̄. Denoting the set of inputs

X = {xi}
p
i=1 and the set of corresponding measurements

y = {yi}
p
i=1, we obtain c̃(x̄) ∼ N

(

µc(x̄), σ
2
c (x̄)

)

, where

the corresponding posterior mean and variance are given as

µc(x̄) = µ(x̄) + k(x̄,X)[k(X,X) + σ2
nI]

−1(y − µ(X)) ,

σ2
c (x̄) = k(x̄, x̄)− k(x̄,X)[k(X,X) + σ2

nI]
−1k(X, x̄) .

After model training, the posterior mean µc(x̄) and variance

σ2
c (x̄) can be used respectively as the model prediction and

corresponding uncertainty at point x̄. To do so, a confidence

interval of 95% is typically selected. A complete overview of

GPs and their practical use can be found in [22].

C. Constrained Bayesian Optimization

In its simplest form, BO is a sequential strategy for the op-

timization of expensive-to-evaluate functions, often subject to

safety or performance constraints. BO is commonly used with

GP models, which use the available evaluations to produce a

probabilistic distribution of the functions and can be updated

when new samples are added to the known experiment set. To

find the optimal inputs x∗ of a general constrained problem

min
x∈X

f(x)

s.t. c(x) ≤ λ ,
(1)

where λ is a constant and X a known bounded domain, the

method starts by placing priors over the unknown objective

and constraint functions f(x) and c(x) and then updates them

with the collected data to form a posterior distribution of the

functions. The posterior distribution is then used to select the

next candidate for evaluation xm+1, according to

xm+1 = argmax
x∈X

αm(x), (2)

where αm(x) is the acquisition function built based on the m

previously evaluated inputs. Well-designed acquisition func-

tions trade off exploration and exploitation by combining

the information content at the inputs and the corresponding

predicted performance. They are a central ingredient of BO

– and of our proposed approach – and can be tailored to

specific (classes of) optimization problems. Numerous acqui-

sition functions have been proposed in more or less recent

works [23]–[25]. In constrained optimization, the acquisition

function considers both the expected objective improvement

and the expected feasibility of inputs, to select cost-reducing

candidates that fulfill the constraints with high probability [26].

III. METHOD

We consider the class of optimization problems having a

deterministic objective and one or more black-box constraints.

We write our optimization problem as

min
x∈X

S(x) (3)

s.t. ck(x) ≤ λk , k = 1, . . . ,K,

where S(x) denotes the problem objective, ck(x) the kth

constraint, and K the number of constraints. The input combi-

nations x belong to a known bounded domain X . We assume

that S(x) can be freely computed as a deterministic function

of inputs x, whereas all ck(x) are unknown, can have any

complexity, and are sampled at each iteration. We also assume

that the optimization can be initialized with a set of previously

evaluated input vectors and corresponding constraints values

T = {xi, c(xi)}
p
i=1 where, for each i, c(xi) = {ck(xi)}

K
k=1

.

A. Acquisition Procedure

We propose a custom acquisition procedure tailored to the

problems at hand. We first introduce two functions: improve-

ment and feasibility probability. The first one determines the

amount of improvement, in terms of cost reduction, that a
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vector with a candidate combination of inputs can produce.

We define it as

I(x) = max
{

0, S(x+)− S(x)
}

, (4)

where x+ is the feasible combination of inputs with the

lowest cost found so far. If no feasible point is known, we

set S(x+) = maxx∈X S(x) + 1. Candidate combinations

producing a cost higher than x+ return no improvement. If the

cost S(x) was unknown and not deterministic, we would need

to take the expectation of (4), corresponding to the expected

improvement acquisition function of [26]. However, here we

do not need to take an expectation of (4) as, knowing S(x),
I(x) is also deterministic.

To include the constraints of (3) we define the feasibility

probability as

FP(x) = Pr[c̃(x) ≤ λ] =

∫ λ

−∞

p(c̃(x)|x, T )dc̃(x) . (5)

Since c̃(x) has Gaussian marginals, FP(x) is a Gaussian

cumulative distribution function. With multiple independent

constraints, the feasibility probability is

FP(x) =

K
∏

k=1

Pr[c̃k(x) ≤ λk] . (6)

We now define the two novel acquisition functions that our

algorithm exploits:

αFIP(x) = FP(x)sgn{I(x)} (7a)

αHFI(x) = (FP(x)− π)I(x) , (7b)

where π ∈ [0, 1] is a confidence threshold that tunes the

aggressiveness of our acquisition algorithm. Feasible Improve-

ment Probability (FIP) (7a) has a conservative approach: it

returns the feasibility probability of the candidates that are

known to produce any cost improvement. As the magnitude of

the improvement is eliminated by the sign function, maximiz-

ing αFIP(x) corresponds to looking for the points that have

the highest chances of respecting the constraints. High FIP

Improvement (HFI) (7b) is more aggressive: the magnitude of

the cost improvement modulates the candidate selection, pro-

ducing a trade-off between feasibility probability and reward.

Maximizing αHFI(x) returns candidates that markedly reduce

the cost while maintaining a minimum feasibility probability

of π.

Algorithm 1: Candidate Selection

input: FP(x) and I(x) of all candidates x in the candidates set U ,
previously evaluated inputs set T , constraints, threshold
probability π

1 Compute αFIP(x) and αHFI(x) for all candidates;
2 Group the elements of T respecting the constraints in Tf ⊂ T ;
3 if Tf = ∅ then

4 α(x)←− αFIP(x) for all x ∈ U ;
5 else

6 if any candidate verifies αFIP(x) > π then

7 α(x)←− αHFI(x) for all x ∈ U ;
8 else

9 α(x)←− αFIP(x) for all x ∈ U ;
10 end

11 end

12 return selected candidate x
∗ = argmax

x∈U α(x)

Algorithm 1 presents the complete candidate selection pro-

cedure for a candidate set U . As the results of Sections

IV-C and VI-A will show, we observed that state-of-the-art

methods such as [26] are too aggressive, while an approach

focusing on FIP only led to excessively conservative explo-

ration. Given that maintaining feasible solutions has higher

priority than optimizing S(x), we introduce a novel switching

acquisition procedure that maintains a trade-off between the

two approaches. As long as no feasible point is found, we

exclusively focus on maximizing the chances of finding one.

We therefore perform the optimization according to (7a) (line

4). Once we have found a feasible experiment, we take

a mixed approach. We want to ensure that the aggressive

exploration of (7b) is conducted only with a sufficient safety

margin, given by the confidence threshold π (line 6). When

the probability of finding cost reducing points is too low,

we take the conservative approach of (7a) (line 9). At line

12, we select the candidate belonging to the candidates set

U that has been assigned the largest α(x). This procedure

increases the amount of feasible experiments found during the

optimization and favors a safer exploration of the constraints

space over uncertain large improvements. It is important to

remark that, given the deterministic nature of our objective

function, both (7a) and (7b) only consider candidates that will

certainly produce a cost reduction.

IV. ACQUISITION PROCEDURE ANALYSIS

In this section, we evaluate the performance of the ac-

quisition function proposed in Section III-A on benchmark

problems, using a Monte Carlo approach. Specifically, we

compare the performance of the acquisition functions proposed

in Alg. 1 with that of the expected constrained improvement

(EIC) [26] acquisition function, which has been successfully

applied to similar industrial application and represents the

state of the art in the domain of manufacturing processes

configuration via Bayesian optimization. We selected three 2D

problems that have been repeatedly used as benchmarks in the

literature:

min
x∈[0,6]2

f(x) = cos (2x1) cos (x2) + sin (x1) (P1)

s.t. c(x) = cos (x1) cos (x2)− sin (x1) sin (x2) ≤ −0.5 ;

min
x∈[0,6]2

f(x) = sin (x1) + x2 (P2)

s.t. c(x) = sin (x1) sin (x2) ≤ −0.95 ;

min
x∈[0,1]2

f(x) = x1 + x2 (P3)

s.t. c1(x) =
3

2
− x1 − 2x2 −

1

2
sin (2π(x2

1 − 2x2)) ≤ 0

c2(x) = x2
1 + x2

2 −
3

2
≤ 0 .

Problems P1 and P2 originally appeared in [26], while

Problem P3 comes from [27]. All of them have been reused

in later works, such as [28]. We consider the objectives f(x)
to be known and the constraints c(x) to be unknown, and

learned by sampling during the BO, or in an offline training

phase. Both problems P1 and P2 have complicated objective

and constraint functions with two disjoint feasible regions. The
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feasible domain of P2 has a smaller total surface than the

one of P1, making it harder to find feasible samples in P2.

The objective function in P3 is simple, but its two constraint

functions form a complicated feasible region, which makes P3

the most interesting problem in the context of this work. We

conducted the study both for noiseless and noisy scenarios.

A. Noiseless Scenario

In the noiseless case, where the constraints evaluations are

not corrupted, we set π = 0.6, corresponding to a moderately

aggressive search for the optimal parameters. We grid each

problem’s input space to generate 20000 candidates. The

optimization is stopped when the best candidate is evalu-

ated, or when 100 iterations have been conducted, and the

corresponding iteration number is called required iterations.

Evaluated inputs x respecting the problem constraints are

called feasible samples. We begin each optimization procedure

by randomly selecting two initialization samples. These are

provided to both Alg. 1 and EIC . Each optimization procedure

is repeated 100 times with random initialization samples.

Figure 1 shows the benchmark problems together with one

representative optimization trace. The mixed strategy upon

which Alg. 1 is based results in a sequence of evaluations

that generally avoid large constraint violations, and produces

a larger fraction of feasible samples than EIC . It can be seen

in all cases that EIC selects samples that would produce very

large cost reductions, but turn out to be infeasible, effectively

wasting evaluations. Because of this, Alg. 1 often requires

a comparable or smaller number of evaluations to find the

optimizer. In the situations where αFIP(x) > π, Alg. 1 has

been designed to behave very similarly to EIC , which explains

why some sections of the optimization traces look identical for

both approaches.

Fig. 2 shows that both algorithms converge with similar

rates. As seen in Fig. 1, EIC aggressiveness often makes

feasible samples harder to find. EIC shows a marginally better

convergence speed only for the first problem, as can be seen

on Fig. 2a. This is due to the relatively simple constraint of

Problem P1 that makes the cautiousness of Alg. 1 unnecessary.

The comparison of achieved averaged feasible samples and

required iterations across all 100 repetitions is summarized in

Table I. In all three problems, Alg. 1 outperforms EIC by

producing more feasible samples, without an adverse effect

on the number of required iterations. Increasingly complex

constraints tend to favor Alg. 1, that outperforms EIC both in

terms of required iterations and in terms of feasible samples

for Problems P2 and P3.

TABLE I: Noiseless Scenario Comparison

P1 P2 P3

Alg. 1 EIC Alg. 1 EIC Alg. 1 EIC

Req. it. 14.6 13.0 22.2 22.9 26.1 31.8
Feas. sam. 66% 49% 35% 28% 54% 27%

B. Noisy Scenario

In this comparison, we corrupt each constraint evaluation

by adding normally distributed noise N (0, τ2), using τ = 0.2,
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Fig. 1: Comparison of representative optimization traces for

EIC (left) and Alg. 1 (right). The problems objective is

represented with a colormap, with lower values plotted in blue.

White dots are used to show unfeasible regions. Initialization

samples are marked in yellow, while the trace is shown in red,

with a larger final marker.

following [28]. As in the previous study, we keep π = 0.6. We

utilize the same list of 20000 candidates that was generated for

the noiseless case. We stop the optimization when a feasible

candidate in a tolerance radius (0.15 for P1 and P2, and 0.0125

for Problem P3) from the best candidate is evaluated, or after

conducting 100 iterations. We consider as feasible samples

the evaluated inputs x whose corrupted evaluation respects

the constraints. As in the noiseless case, we initialize Alg. 1

and EIC with two identical random samples. Each algorithm

is run five times with the same initialization samples, but

different noise realizations. We repeat this with 20 different

initializations for a total of 100 optimizations. The aggregated

results, averaged across all repetitions, are shown in Table II.

As expected, the performance of both algorithms deteriorates

compared to the noiseless case for all problems. Despite this,

Alg. 1 still outperforms EIC in terms of feasible samples for

all Problems, and the number of required iterations is again

comparable. Only in the case of Problem P2, Alg. 1 requires

on average 11 more iterations than EIC to meet the stopping
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Fig. 2: Convergence speed comparison over 100 repetitions.

Dashed lines represent best feasible sample found at a given

iteration for each repetition. These results are averaged to

produce the solid lines.

TABLE II: Noisy Scenario Comparison

P1 P2 P3

Alg. 1 EIC Alg. 1 EIC Alg. 1 EIC

Req. it. 26.0 28.5 60.9 49.9 32.5 36.0
Feas. sam. 59% 35% 25% 15% 48% 19%

condition. This is explained by the noise magnitude, which is

large when compared to the feasible region size. Furthermore,

when Alg. 1 finds the top-left feasible region, its cautious

nature makes it less likely to explore the bottom-right feasible

region where the optimizer is. The difference between the two

algorithms is particularly visible in Problem P3, that has the

most complex constraints. Alg. 1 finds 2.5 times more feasible

samples than EIC , and the efficient learning of the feasible

region leads to faster convergence.

C. Confidence Threshold Study

We now analyze the effect of the confidence threshold π

on Alg. 1 performance, focusing on Problem P3. Its simple

objective and complex constraints exemplify the class of

problems for which Alg. 1 was designed. We follow the same

procedure as in Sec. IV-A. We repeat the numerical study with

11 different values of π to produce the data shown in Fig. 3.
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Fig. 3: Required iterations and feasible samples for different

values of π, when solving Problem P3 using Alg. 1.

The confidence threshold π modulates the behavior of our

algorithm. When π = 0, Alg. 1 only uses (7b), which in this

case is identical to using EIC on a known objective function.

As expected, the results for π = 0 correspond to the ones in

Table I for EIC on P3. At the other extreme, when π = 1,

Alg. 1 only uses (7a), which produces a very conservative

and slow approach that never attempts bold cost reductions.

We further observe that increasing the value of π increases

the fraction of feasible samples in the optimization trace.

Interestingly, the number of required iterations does not grow

with π. Instead, given the nature of the problem, a cautious

learning of the constraints can accelerate the optimization. All

values of π ∈ [0.1, 0.9] make Alg. 1 outperform EIC on both

metrics, with a minimum number of required iterations found

at π = 0.6. While the confidence threshold can be fine-tuned

according to the optimization goals, the algorithm is relatively

robust to the changes of π and can be safely set to π ∈
[0.3, 0.8] to produce satisfactory results. Tuning-dependent

algorithms often have a very narrow hyper-parameter window,

out of which performance deteriorates quickly. This is not

the case with Alg. 1: the robust performance and its gradual

change make the fine-tuning task simpler for practitioners. The

complexity and computation time of Alg. 1 are independant of

π and entirely similar to those of comparable methods such as

EIC , with each iteration being completed in less than 500ms.

V. IMPLEMENTATION ON MANUFACTURING PROCESSES

In this section we describe the methods we developed to be

able to efficiently utilize Alg. 1 for the parameters tuning of

manufacturing processes.

A. Parallel Optimization

Parallelizing the BO evaluations accelerates the data col-

lection procedures. Several methods to parallelize BO have

been proposed [12]–[15]. We utilize a simple fixed batch

size technique that is largely based on sequential selection

of query points. Unlike standard BO where the candidate

x∗ evaluation is conducted immediately, a prediction ŷ∗ of

the output produced by the candidate is made. The data



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2022

set of known evaluations is virtually expanded using the

prediction, the GP is retrained, and another candidate is

selected. This process of virtual evaluations is repeated until

a batch B = {x∗
i |x

∗
i ∈ X}ni=1 having the desired size

n has been generated. The points belonging to the batch

are evaluated simultaneously and the predictions {ŷ∗i }
n
i=1 are

replaced with the experimental results {y∗i }
n
i=1 to retrain the

GP. When using GPs to model the unknown functions, data

set virtual augmentation can be carried on by drawing samples

ŷ∗ from the posterior distribution evaluated at the candidate

site c̃(x∗) ∼ N
(

µc(x
∗), σ2

c (x
∗)
)

.

B. Status-Aware Optimization

Industrial process modeling can include uncontrollable but

measurable parameters, reflecting the status of the manufac-

turing equipment. Output data collected in different sessions

might contain offsets due to drifts or undocumented changes

to the equipment between sessions. Including all measurable

process parameters in the modeling and optimization makes it

possible to prevent deviations during the configuration.

Let us consider a process whose model takes inputs x =
(xc,xm) to predict the outputs c(x). The inputs in xc can

be freely tuned during the BO configuration process, while

xm represents measurements obtained at the end of each

evaluation of x. The measurements xm may depend on the

controllable parameters xc as well as on the equipment status.

We assume that this status remains constant during a single

experimental session, but can change between sessions.

We detail a calibration procedure for the case where xm

contains a single status dependent measurement V . Using

the entries of the initialization data set T , we train a model

accepting the controllable inputs xc and predicting the mea-

surement V̂ = MV(xc). At the beginning of each new

experimental session, we conduct an experiment with any

settings xb
c ∈ T , measure the corresponding V b and compute

the offset δb = V b − V̂ b, where V̂ b = MV(x
b
c ) is the

measurement that an unchanged equipment – with respect to

T – would produce. To generate the list of candidates for the

BO session, we first grid the space of controllable inputs Xc

to produce a set of candidates xc. We then predict the status

dependent measurement V̂δ corresponding to each candidate

xc in the set according to V̂δ = MT(xc)+δb. Each prediction

is used to expand the corresponding xc, producing a candidates

set U of vectors x = (xc,xm).
Parallel BO is carried on the candidate set U as detailed

in Alg. 2 and Fig. 4. Following the procedure described in

section V-A, we select candidates individually and expand our

virtual database using the GPs posterior mean (line 13). The

termination condition at line 16 interrupts the procedure when

most of the candidates have a low FIP, indicating that further

improvement is unlikely.

VI. ATMOSPHERIC PLASMA SPRAYING CONFIGURATION

We demonstrate an application of the proposed optimization

algorithm and implementation procedure on APS. APS is

a thermal spraying process where micrometer-sized powder

particles are injected into a viscous enthalpy plasma jet that

Algorithm 2: Optimization Workflow

input: Initialization data set T , candidate set U , constraints λ, batch
size n, threshold probability π, termination threshold ǫ

1 Create an empty candidate batch B ← ∅;
2 repeat

3 if B 6= ∅ then

4 Evaluate experimentally the candidates in B and expand T
with {(x∗

i ,y
∗
i )}

n
i=1, where y

∗
i collects the evaluations

of each x
∗
i ;

5 Empty B ← ∅;
6 end

7 Use (4) to calculate I(x) of all x ∈ U , make a virtual copy
Tv ← T ;

8 for i = 1 to n do

9 Using the the data in Tv , model the constraints c(·);
10 Use (6) to calculate FP(x) of all x ∈ U ;
11 Select the candidate x

∗
i using Alg. 1;

12 Remove x
∗
i from U and add it to B;

13 Expand Tv with (x∗
i , µc(x∗

i )), where µc(x∗
i ) collects the

predictive means of the constraints c(·);
14 i← i+ 1;
15 end

16 until αFIP(x
∗
i ) < ǫ for at least half of the candidates x

∗
i selected

for a batch B ;

17 return feasible stress index minimizer x
+ = argmin

x∈Tf
S(x),

where Tf ⊂ T contains the feasible elements of T

Parallel BO (Alg. 2)Candidates set generation

Expand

data set

Retrain GP
models

Select
using Alg. 1

Batch filled?

Manufacturing Stage

Manufacturing Analysis

Yes

No
Initialization data set

Candidates set
generation

using Sec. V-B

Fig. 4: Flowchart of the proposed configuration method

heats them and propels them. The particles form a protective

coating that improves the mechanical properties of a substrate

upon bonding with its surface. The coating properties (e.g.

application rate, thickness, porosity, microhardness) depend on

multiple process input parameters [29].

Details about the process data-driven modeling are available

in [30]. Our goal is to select values for six controllable process

inputs to regulate the coating microhardness and porosity and

maximizing the equipment lifetime. In the absence of real-

time measurements reflecting the system wear, the objective of

maximizing the lifetime is encoded through the minimization

of the stress index, an empirical relation reflecting the working

conditions of the gun components during the coating process.

The stress index value can be calculated explicitly from a

subset the input parameters. While spraying a coating, we

measure the gun voltage as it contains valuable information

about the equipment status.

A. Simulated Process Optimization

To conduct simulated studies, we use the neural network

model structure and data set from [30]. The neural network

simulates the behavior of the APS machine and acts as an

oracle during the optimization process, returning the micro-

hardness and porosity of virtual coated samples. Following the

procedure detailed in section V-B, we treat the gun voltage as a
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status dependent measurement. We simulate a scenario where,

during a first gun ignition, we measure a voltage offset of

2V, indicating a change in the equipment status. The goal of

the optimization is to find combinations of inputs producing

coatings with microhardness ranging between 635HV and

675HV and porosity between 6% and 8.2% while minimizing

the gun stress index. We select a batch size n = 5, a threshold

probability π = 0.4 and a termination threshold ǫ = 0.05. We

initialize the optimization with Ninit = 86 experiments, none

of which respects the constraints.

TABLE III: Stopping Batch and Fraction of Feasible Samples

for Alg. 1 and EIC

Alg. 1(π = 0.4) EIC

Cost 102 102
Stopping batch 4 7
Nr. evaluations 20 35
Feasible samples 45% 20%

Table III compares the performance of the proposed acqui-

sition procedure with that of EIC under identical conditions.

Both algorithms reach the same minimum cost when meeting

the termination condition, however Alg. 1 does so using

43% less evaluations and producing 2.25 times more feasible

samples. The results reaffirm those in section IV, confirming

that Alg. 1 outperforms EIC for APS configuration. A very

detailed analysis of Alg. 1 behavior on this simulated problem

is available in [30].

B. Process Optimization Experiments

We tested our algorithm on the APS machine to evaluate

its real-world performance. As in the simulated case, the

goal was to find combinations of inputs that produce coatings

with microhardness ranging between 635HV and 675HV and

porosity between 6% and 8.2%. The models were initialized

using all the available data set of 86 experiments. We could

coat four samples in Batch 1 (with a voltage offset of 2V)

and five samples in Batch 2 (with a voltage offset of −0.8V).

The experimental results are shown in Fig. 5. As in the case

of the simulated procedure, no initialization experiment was

feasible, which made the optimization algorithm begin with

a cautious approach. The samples of Batch 1 respect the

imposed constraints both for microhardness and porosity. The

lowest found stress index corresponds to 120.3 (indicated by

a star in the figure). This value is used as an upper bound

in the second batch search, where the algorithm now acts

aggressively to further reduce the stress index. The results

are very similar to the simulated ones, with the samples of

batch 2 being unfeasible because of low microhardness (cf.

[30], Fig. 5). While further experimental work was impossible

as APS is very expensive and sample analysis extremely

time-consuming, we observe a qualitative agreement between

experimental and simulated results.

VII. FUSED DEPOSITION MODELING CONFIGURATION

We further used Alg. 1 to search for optimal print parame-

ters in FDM. We printed using a liquid-crystal polymer (LCP)
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Fig. 5: Experiments for the optimization of an APS process

showing the coating properties of the samples belonging to

two batches. In the top panel, the star denotes the best feasible

point found in the experiments.

filament, for which good print parameters are particularly hard

to find [31]. The goal of the configuration consisted in finding

a combination of extrusion rate and printer speed that would

minimize the print time while maintaining a satisfactory print

quality. The print quality constraint was enforced by setting

an upper limit of 10 µm to the surface roughness Ra of the

printed samples. We set the batch size to one and initialized

Alg. 1 with seven available experiments.

Figure 6 shows the results of the configuration procedure.

To better demonstrate the behavior of Alg. 1, we began

the process with π = 0.4, making the approach relatively

cautious. The algorithm steadily reduced the print time and a

large fraction of the samples printed in this phase respect the

roughness constraint. Then, after experiment 16, we lowered

the confidence treshold to π = 0.1, making the algorithm more

aggressive. Almost immediately, the print time was signifi-

cantly reduced. As expected in this second phase, however,

the fraction of samples respecting the constraint diminished

significantly, clearly showing the trade-off induced by π.

VIII. CONCLUSION

We presented a method for the automated configuration of

advanced manufacturing processes, based on GP models and

parallelized constrained BO. Our method incorporates process

information in the optimization procedure, to efficiently direct

the search for input parameters that produce the desired output

property specifications and minimize the process cost. The

algorithm is based on a novel acquisition method tailored

to the class of problems having known objectives and black-

box constraints, to which advanced manufacturing processes

belong. The acquisition method performance was compared to

the state-of-the-art on benchmark problems. We also demon-

strated our method on APS and FDM. The results show that

the proposed method quickly finds feasible input combinations

and then exploits the collected information and the problem

structure to optimize the processes.
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